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Improved Closed-Form Approximation for Dutch Roll

W. F. Phillips*
Utah State University, Logan, Utah 84322-4130

An improved Dutch-roll approximation that includes the effects of roll as well as those of sideslip and yaw is
presented. This new approximation is based on a Taylor series expansion in one over the roll-damping deriva-
tive. The eigenvalues obtained from this solution are identical to those obtained from the traditional Dutch-roll
approximation when the roll-damping derivative approaches infinity. From the new closed-form approximation,
the Dutch-roll frequency is shown to be a function of a dimensionless parameter, which the author has called
the Dutch-roll stability ratio. In addition, this new solution shows that there are three distinct components to the
Dutch-roll damping. The first is the conventional yaw damping term, but the present solution points out two other
contributions to the Dutch-roll damping. These are called the Dutch-roll coupling and phase damping. In most
cases, the yaw damping is the largest of these three components. However, both the coupling and the phase damp-
ing can degrade the total Dutch-roll damping and, under certain conditions, could cause the Dutch-roll motion to

become divergent.

Nomenclature

A, = planform area of the wing

b = wingspan

C, = rolling moment coefficient

C, 5 = changeinrolling moment coefficient with dimensionless
rolling rate

C,; = changein rolling moment coefficient with dimensionless
yawing rate

C, 3 = change in rolling moment coefficient with sideslip
angle

C, = yawing moment coefficient

C,,; = changein yawing moment coefficient with dimensionless
rolling rate

C,; = changein yawing moment coefficient with dimensionless
yawing rate

C, s = changein yawing moment coefficient with sideslip
angle

Cy = side-force coefficient

Cy,; = changein side-force coefficient with dimensionless
rolling rate

Cy; = changein side-force coefficient with dimensionless
yawing rate

Cyp = change in side-force coefficient with sideslip angle

g = acceleration of gravity

I, = rolling moment of inertia, body-fixed coordinates

I, = yawing moment of inertia, body-fixed coordinates

m = aircraft mass

D = rolling rate

D = dimensionlessrolling rate

Rp. = Dutch-roll-couplingratio

Rp, = Dutch-roll phase-divergenceratio

Rpy = Dutch-roll-stabilityratio

R,. = complex coefficient

Ry, = complex coefficient

R,, = dimensionless gravitational ratio

R, ; = dimensionlessroll-damping ratio

R, = dimensionlessroll-couplingratio

R, 3 = dimensionlessroll-stability ratio

R, ; = dimensionlessyaw-couplingratio

R,; = dimensionlessyaw-damping ratio

R, = dimensionlessyaw-stability ratio
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5 = dimensionlessrolling side-force ratio

+ = dimensionless yawing side-force ratio

= dimensionless slip-damping ratio

= yawing rate

= dimensionless yawing rate

time

airspeed

= equilibrium airspeed

= sideslip velocity component, body-fixed
coordinates

= aircraft weight

= spanwise position, Earth-fixed coordinates

= sideslip angle

= deviation from equilibrium

= eigenvalue

= eigenvalue for infinite roll-damping ratio

= dimensionless spanwise position, Earth-fixed

coordinates

= air density

op; = Dutch-roll-dampingrate

= dimensionless Dutch-roll-damping for infinite roll
damping

= dimensionless time

Euler bank angle or roll attitude

= Euler azimuth angle or heading

Dutch-roll-damped natural frequency

dimensionless undamped Dutch-roll frequency for

infinite roll damping
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Introduction

UTCH roll is a lightly damped oscillatory motion that can oc-

cur when an aircraft is disturbed laterally from equilibrium
flight. The motion is an oscillatory interchange between sideslip,
roll, and yaw that occurs as a statically stable aircraft attempts to
reestablish lateral and directional equilibrium. Dutch roll is usually
the most troublesome of the natural modes associated with the dy-
namics of an aircraft in free flight. This periodic motion has been
studied for nearly 100 years and is well understood.

One approach to the study of aircraft dynamics involves solving
the full nonlinear equations of motion.! This system of nonlinear
equationsis quite complex. Nonlinear dynamics with three degrees
of freedom is typically treated using the method of bifurcation to-
gether with numerical methods. Campos? gives a good review of
the work on nonlinear aircraft dynamics.

A more common approach to aircraft dynamics starts with the
linearized equations of motion that were first developed by Bryan.?
Theselinearizedequationsresultin an eigenproblemof ordertwelve
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that can be solved for the dynamic modes associated with an aircraft
in free flight. Perkins* has presented a detailed review of the early
work on linearized aircraft dynamics.

Linearized Dutch roll is characterized by the frequency, the
damping rate, and the relative amplitudes and phase shifts for
the oscillations in sideslip, rolling rate, yawing rate, course de-
viation, bank angle, and heading. Once the aerodynamic stability
and damping derivatives have been determined from wind-tunnel
tests or other means, the free-flight Dutch-roll characteristics for
an aircraft can readily be evaluated. This can be done by nu-
merically determining the eigenvalues and eigenvectors associated
with the linearized equations of motion (see, for example, Etkin
and Reid,> McCormick,” McRuer et al.,” Nelson,® or Perkins and
Hage®). However, the eigenvalues and eigenvectors for Dutch roll
depend on many aircraft design and operating parameters, and the
nature of this dependence is not easily observable from a numer-
ical solution. For this reason, a closed-form approximation that
accurately describes the essential features of Dutch roll is desir-
able. In addition, closed-form solutions have always been useful
for the optimization of aircraft control systems (see Ashkenas and
McRuer'?).

The usual closed-form approximation for Dutch roll is obtained
by assuming the motion consists solely of sideslip and yaw. The
rolling rate, the bank angle, and the rolling momentum equation
are all completely neglected in the traditional Dutch-roll approxi-
mation. Results obtained from this commonly used approximation
are not in particularly good agreement with the exact solution for
Dutch roll. The reason for poor agreement between this traditional
approximationand the exact solution is that Dutch roll involves sig-
nificantoscillationsin bank angle. Althoughseveral variations of the
traditional Dutch-roll approximation have been proposed, none of
these accurately predict many of the fundamental characteristics of
Dutchroll. Both McRuer et al.” and, more recently, Etkin and Reid®
present good reviews of existing Dutch-roll approximations. In the
present paper, an improved Dutch-roll approximation that includes
the effects of roll as well as those of sideslip and yaw is presented.
This new Dutch-roll approximationis based on the method used by
Phillips'! for the analysis of phugoid motion.

Traditional Dutch-Roll Approximation

To obtain the Dutch-roll eigenvalues and eigenvectors, whether
numerically or analytically, we start with the linearized lateral
equations of aircraft motion. The development of these equations
can be found in any undergraduate textbook dealing with aircraft
dynamics.’~° The eigenvalues and eigenvectors are obtained from
the homogeneousequationswith all controlinputsset to zero. For the
Dutch-roll approximation, we neglect the product of inertia and the
changein side force with respect to rolling rate because these values
are typically small and have little effect on Dutch roll. If we also
restrict the analysis to deviations about level flight, the familiar lin-
earized lateral equations of motion can be written in dimensionless
form as

A[f [Ryy 0 (Ry,—1) 0 R,, ol(ap
Ap Ris Ri; R, ; 0 0 O0|]Ap
AL _ Ry Ry Ry 00 offarl
Ac 1 0 0 0 0 1|]a¢
Ad 0 1 0 0 0 o0llag
Ay | 0 0 1 0 0 0of|lAy

where a subscript following a comma indicates differentiation. As
is the usual convention, the characteristic length is taken to be the
semispan and the characteristic velocity is taken to be the equilib-
rium airspeed. Thus,

Aﬂ ~=AV/V0, Aﬁ = bAP/ZVO

AF = bAr/2V,, AE=2Ay;/b )

Here, the A indicates a deviation from equilibrium, and the notation
used on the left-hand side of Eq. (1) indicates differentiation with
respect to dimensionless time,
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The dimensionless coefficients on the right-hand side of Eq. (1) are
all evaluated at the equilibrium flight condition and are defined as

Ryp = (pA,b/4m)Cy g, Ry; = (pA,b/4m)Cy;
Ry, = gbl 2v2, Ry = (oAbl 81,)C1,
Ry = (pA,bYl 81.)Cp,, R, = (pAb 81,)C,,

Rnﬁ = (pAwbz| Slzz)cnﬁa Rn p (pAwbz| SIZZ)CnA,

P

p
an' = (pAwbz| Slzz)cmf (4)

Dutchrollis a damped oscillatory motion characterizedby a com-
bination of sideslip, roll, and yaw. Nevertheless, the best known
and most widely used Dutch-roll approximation is a flat yawing/
sideslipping motion in which roll is completely suppressed. In this
approximation, the rolling rate, the bank angle, and the rolling mo-
mentum equationare completely neglected. Using these approxima-
tions for motion relative to level flight, the eigenproblemassociated
with Eq. (1) becomes

(Rys=2) 0 (Ry,—1) 0 0 07 (AB 0
0 1 0 0o 0 o0]]|ap 0
Rz 0 (R,—A 0 0 0]|]|ar 0
| 0 0 -2 0 1 Al ~ o
0 0 0 0 1 0| ]|a¢ 0
0 0 1 0o 0 -] lay 0

(5)

The nontrivial eigenvalues obtained from Eq. (5) are readily found
to be

A =(Ryp+ R, ;)2

+i/(1 = Ry-)R,p+ RyyR,; — [(Ry; + R,)I2P  (6)

and the associated eigenvectorsare given by

Ap) 0

AF R, p/(A— Ry7)

AE b = 1/A+[Rypl (A= R, )22 (A 7
A¢ 0

Ay [Rp/ (A = Ryp)/ 2

From Eq. (6), the Dutch-roll frequency is

wp, = (2Vy/b) Im(R)

=Q2Vo/b)\/(1 = Ry)R, s + RysR,z — [(Ry + R, -)/2]
®)

and the Dutch-roll damping rate is
opr = —(2Vo/b)Re(2) = =(Vo/b)(Ry s + Ryr) C))

Best results from this traditional approximation are obtained for
light aircraft. For example, consider the typical general aviation
airplane having
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Fig. 1 Typical Dutch-roll flight deviations for a light airplane.

A, =185, b =331t Vo = 180 ft/s
W =2800 Ibf, I, = 1000 slug-f£, I.. =3500 slug-ff
Cyp = —0.560, Cy; =0.0, Cy; =0.240
C,p =—0.075, C.; =—0.410, C,; =0.105
C,.p =0.070, C,, =—0.0575, C,; =—0.125

For this light airplane, the exact solution for the Dutch-roll eigen-
values and eigenvectors obtained numerically from Eq. (1) gives

AB ) 0.58853 J
Ap —0.11045F 0.00147i
AF 0.01444 F 0.12146i
N 0.16888 F 0.22197i
Ad 0.09389 + 0.48749i
Ay —0.54776 % 0.04678i

X exp[(—0.04498 £ 0.21791i) 7]

whereas the traditional approximation obtained from Eqs. (6) and
(7) yields

AB 0.65348

Ap 0.00000

AF 0.01558 F 0.12960i
AE [ T "] 0344297 0.13878i
A 0.00000

Ay —0.64238 % 0.07410i

X exp[(—0.04690 + 0.19634i)7]

Even for this light aircraft, although the eigenvalues predicted by
the traditional approximationare accurate to within about 10%, the
eigenvectorsdo not confirm the underlying hypothesis that oscilla-
tions in roll are negligible. For light aircraft, the largest Dutch-roll
oscillations are typically in sideslip. However, the Dutch-roll am-
plitude for the rolling rate is nearly as large as that for sideslip and is
about the same as that for the yawing rate. Furthermore, Dutch-roll
oscillations in bank angle are typically as large as those in head-
ing. Figure 1 shows the relative amplitudes and phase shifts for
the Dutch-roll flight deviations of a typical light airplane. Because
Dutch roll in larger aircraft typically produces even larger rolling
oscillations, it is difficult to justify neglecting roll when attempting
to develop a Dutch-roll approximation.

Improved Dutch-Roll Approximation

We shall now develop an improved Dutch-roll approximation
that includes the effects of roll as well as those of sideslip and yaw.

Accounting for all three lateral degrees of freedom, the eigenprob-
lem associated with Eq. (1) is

{(Rw -2 0 (Ry;=1) 0 Ry O ‘l
Ry  (R,—2) Ry 0 0 0

[ Rup R, ; (Ri=2) 0 0 0]

| 1 0 0 -2 0 1|

| o 1 0 0 -4 0|

I_ 0 1 0 0 —/lJ

(10)

S O O o © O
 N—

0
AB |
Ap
AF

X =
Ag
Ad
Ay

Using the second and fifth equationsin Eq. (10), we can eliminate
the rolling rate and bank angle from the first and third equations.
Thus, Eq. (10) can be rearranged and separated to yield

IVR _ Kok C1 4+ Ry, — o —l
Ry = DA Y Ry =) |

|

| |

| Rmﬁ _ Rlﬁ - Rmﬁ an Rl; np |

I_ R.;—2 RA J
AB| o

and
Aﬁ Rx(‘
AT R..
AE ¢ =130+ R, /AL FAB (12)
A¢ R../A
Ay R../A
where
R = R, pR1 7 — R p(R,; — 1)
M‘ (R/ P A‘)(Rnr - A‘) Rl;
R gR, ; — R, s(R, 5 — A
ch = LB s P ﬁ( ,p ) (13)

(Rlﬁﬁ - l)(Ii’m'- - l) - RLFRnA,ﬁ
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The characteristicequation for Eq. (11) is

R..R
Ryp— —2—2— 2 ) (=1+Ry, -
’ (R.; — VA ’
R _ RlﬁRmﬁ R . — RIJ’RnA,ﬁ -2
“P Ry — A " Ry — A

which can be expanded to give

Rg,v RL"‘
(R, =22 )

(14)

22— (Ryp + Ry — DrBun Vi (1= Ry R,y + RygR s
Y.p n,r R/ 2 Y. F n,pB Y.p™n, 7
b
+ Rlﬁ[ng - (1 - RYJ’)Rmﬁ] - RYﬁRL}"Rn‘,ﬁ

R, — 4

+ ng(RL)"Rnﬁ - RlﬁRnJ’) -0 (15)
(Ri,; = HA

Becauserollis typically heavily damped, those terms in Eq. (15) that
are inversely proportional to the roll-damping ratio are small, but
not necessarily totally negligible. This suggests expanding Eq. (15)
in terms of a Taylor series in one over the roll-damping ratio. For
this purpose we use the expansion,

! —1+/l+/12+/13+ (16)
Rip=2 Ry, R, R, R,

If we let A represent the eigenvalues corresponding to an infinite
roll-dampingratio R, ; — oo, then Eq. (15) gives

2% —(Ryp+ R,)Aw + (1 = Ry,)R, 5 + RysR,; =0 (17)

and the eigenvalues are the roots of this quadratic equation,

Ao =(Ryp + R,7)/2

+iy/(1 = Ry;)R, 5+ RygR,; — [(Ryp + R, /2P (18)

Note that the eigenvalues obtained from Eq. (18) are identical to
those obtained from Eq. (6). Thus, we see that the traditional Dutch-
roll approximationis valid only in the limit as the roll-dampingratio
approachesinfinity. If the roll-dampingratio were large enough, the
rolling motion associated with Dutch roll would be completely sup-
pressed and the motion would indeed consist solely of sideslip and
yaw. However, an aircraft seldom possesses sufficient roll damping
to eliminate the rolling oscillations from Dutch roll. The effects of
roll can be included in the Dutch-roll approximation by carrying
some of the low order terms from the Taylor series expansion given
by Eq. (16).

Because the roll-damping ratio is typically larger than the Dutch
roll eigenvalue, the terms in Eq. (16) become smaller with increas-
ing order. This Taylor series can be evaluated approximately by
replacing the actual eigenvalues on the right-hand side with the ap-
proximate eigenvalues from Eq. (18),

1+/l°°+/l‘%°+lg°+ (19)
Rp=2 Ry R, R, R

1

Furthermore, because the Dutch-roll damping is typically an order
of magnitude less than the Dutch-rollfrequency, we can alsoneglect
the damping in Eq. (19) and use the approximations,

1 1 e @ @
_:_11_2__’%+l_4+“- (20)
R,—A R, R, R, R,

and
1 e L L0 00y
= Fi— —— i =t
(R, — M)A o Ry R, R, R,

where

@0 = /(1 = Ry;)R, 5+ Ry 4R, ; (22)

Retaining the first two terms in each of these Taylor series and ap-
plying the results to the characteristicequation given by Eq. (15), we
obtain a quadratic equation for the approximate Dutch-roll eigen-
values,

2> =(Ryp+ Rur + Ri)2+ (1= Ryp)Ryp
+ RysR,; + Rype =0 (23)
where the complex coefficients R, and Ry, are defined as

RL}"Rn p . (I)oo RL}"Rn p

Ric = L3 2 24)
R 5 R/%ﬁ

and

Rlﬁ[ng - (1 - RYJ’)Rmﬁ] - RYﬁRL)’Rmﬁ
Ry = o

T RoRuRuy — RigR.r)
R
ng(RlﬁRnf - RIJ’RnAﬁ)
a_)oo RLﬁ
+i _
+ Do {Rlﬁ[ng - (1 - RYJ’)RnAﬁ] - RYﬁRL)’Rn‘,ﬁ}

R
(25)

The eigenvalues obtained from Eq. (23), with the use of Eq. (22),
can be written as

A =(R)’ﬁ + an‘ + Rdc)/2

+i\(l=Ry;)R,p+ RypR,; + Rye = [(Ryp+ Ry s+ Ry 2

:(R)’ﬁ + Rnf + Rdc)/2

i1+ Rl @2 — [(Ryp+ Rop + Rid 120, (26)

00

Because both the complex constant R ;. and the damping term are
small compared to @, , Eq. (26) can be further approximated as

Ryp+ R, + Ry
2

2
‘io. (1 L Re(Ry) | Im(Rp)  (Ryp + Rur + Rao) )

A=

Y 802

~ RYﬁ + an‘ + Rdc - Im(Rfc)/(boo
- 2

2
R Rys+ R,; + R
iiww \/1 + Re(_ fc) _ ( Y.p _ru dc)
@2, 2@

_ RYﬁ + an‘ + Rdc - Im(Rfc)/(boo
a 2

2
Ryp+R,;+ R
ii\/(bfo +Re(Ry.) — (—”3 > “) 27)

Because the imaginary componentof the Dutch-rolleigenvalueis
typically an order of magnitude larger than the real component, the
second-orderterms in R, and R. do not have a significant effect
on the Dutch-roll frequency. However, the second-order terms are
crucial to an accurate determination of the much smaller Dutch-roll-
dampingrate. For this reason, we shall retain all second-orderterms
in the real component of the eigenvalue but neglect second-order
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terms in the imaginary component. Thus, because the imaginary
component of R, is second order, it can be neglected in the Dutch-
roll approximation. We can also neglect the second-order term in
the real part of R;. because it affects only the frequency. On the
other hand, we must retain the second term in the imaginary part
of Ry. because this term is part of the damping. Thus, for this
approximation, the Dutch-roll eigenvalues are

A= (RYﬁ + an‘ - RDC + RDp)/2

+iy/(1 = Rys)Rup + Ry Ry + Rog — [(Ry s + R, 1) 12
(28)

where we define the Dutch-roll-stabilityratio,
Ros = (R p[Ryy — (1 = Ryr)Ru 5] — RypRis Ry pH Ry (29)
the Dutch-roll-couplingratio,
Rpc = Ri;R, /R 5 (30)
and the Dutch-roll phase-divergenceratio,

R _ ng(RL,FRnﬁ - RlﬁRmF) RDS
Dp = - =
P R, ;(R, 3+ RygR,7) R ;

(3D

This gives the approximate Dutch-roll frequency,
o, =(2Vo/b)

Xy/(1=Ry;)R, 5+ RypR,; + Rp, = [(Ry + R, ;)/2
(32)

and the approximate Dutch-roll-dampingrate,
Opr = _(VO/b)(RYﬁ + Rni - RDC + RDp) (33)

Results

In contrast to the result predicted from Eq. (8), the Dutch-roll
frequency obtained from Eq. (32) depends on the roll stability of
the aircraftand the acceleration of gravity. The Dutch-roll damping
from Eq. (33) contains two additional contributions that are not
included in the approximation given by Eq. (9). Here the Dutch-roll
damping is found to be a function of the roll-damping derivative, the
roll-yaw coupling derivatives,and the lateral stability derivativesas
well as the yaw and slip-damping derivatives. The eigenvalues and
eigenvectorspredicted from Eqgs. (28) and (12) are greatly improved
over those predicted from Egs. (6) and (7). For example, consider
the typical midsize jet transport at 35,000 ft having

A, =2000 ft?, b =120 ft, Vo =778.5 ft/s

M =08, W =126,000 1bf

I, =1.15 X 10° slug - f%, I.. =4.07 X 10° slug - ft?

Cyp =—03812, Cy.; =0.0, Cy; =0.0
Crp =—0.177, G, =—0312, C,; =0.153
C,p =0.129, C,, =—0011, C,, =—0.165

For this airplane and flight condition, the exact solution for the di-
mensionless Dutch-roll eigenvalues and eigenvectors obtained nu-
merically from Eq. (1) gives

AB ) 0.024277F 0.180838i |
Ap —0.008964 % 0.103525i
AP _ . | -0.017147% 0002782
Ae [ 7 "% —0.239543 F 0.093425i
A 0.930224

Ay —0.011572 % 0.155079

X exp[(—0.00964 + 0.11129i)7]

The approximate solution obtained by using Eq. (28) with Eq. (12)
results in

AB 0.02420 F 0.18095i
Ap —0.00890 * 0.10357i
Ar | _ . |-0.01714% 000278
AE[ T ) —0.24199 F 0.09172i
Ad 0.92977

Ay —0.01167 % 0.15487i

X exp[(—0.00957 % 0.11140i)7]

whereas the approximate solution obtained from Eqgs. (6) and (7)
yields

AB 0.59697
Ap 0.00000

AF 0.00112F 0.06001i
Ac [ T "] 0523637 0.11664i
A 0.00000

Ay —0.59104 % 0.05393i

X exp[(—0.01106 = 0.10053)7]

For this jet transport, the eigenvalues and eigenvectors predicted
by the improved Dutch-roll approximation agree very closely with
the exact solution. For the traditional approximation the damped
natural frequency is in error by 10%, the damping error is 15%,
and the eigenvectors are not even reasonable. Notice that, for this
midsizeaircraft, the largest Dutch-rolloscillationsarein bank angle,
which is completely neglected in the traditional approximation.
Figures 2-7 show how the Dutch-roll approximation given by
Eq. (28) compares with that given by Eq. (6) and the exact so-
lution for a broad range of aerodynamic parameters. Note that,
as the roll-damping derivative approaches infinity, the Dutch-roll-
stability ratio, the Dutch-roll-coupling ratio, and the Dutch-roll

T
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Fig. 2 Effect of roll damping on the dimensionless Dutch-roll eigen-
values.
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Fig. 3 Effect of yaw damping on the dimensionless Dutch-roll eigen-
values.
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Fig. 4 Effect of roll stability on the dimensionless Dutch-roll eigen-
values.
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Fig. 5 Effect of yaw stability on the dimensionless Dutch-roll eigen-
values.
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Fig. 7 Effect of yaw coupling on the dimensionless Dutch-roll eigen-
values.

phase-divergence ratio all approach zero. Hence, we see that, in
the limit of infinite roll damping, the result given by Eq. (28) re-
duces exactly to that given by Eq. (6). Thus, as mentioned earlier,
Eq. (6) represents an asymptotic solution for infinite roll damping.
This can be seen graphically in Fig. 2, where all parameters ex-
cept the roll-damping derivative have been held constant at those
values given in the aforementioned example. In Fig. 3, a compari-
son between Eq. (6), Eq. (28), and the exact solution is shown for
a broad range of yaw damping. In Fig. 4, the same comparison is
shown for a broad range of roll-stability derivatives. Figure 5 shows
the same comparison for a broad range of yaw-stability derivative.
Similar comparisons, showing the effects of roll and yaw coupling
are displayed in Figs. 6 and 7, respectively.

The aircraft chosen for the example given was a midsize jet trans-
port. The author has made similar comparisons for other types of
aircraft. Light aircraft have a low rolling moment of inertia, rela-
tively high roll damping, and are typically flown at lower altitudes.
Thus, light aircraft are characterized by a fairly high roll-damping
ratio and are particularly flattering to the traditional Dutch-roll ap-
proximation. For such aircraft, the traditional approximation gives
eigenvaluesthat are typically accurate to within about 10%, and the
improvedapproximationis accurate to within a small fractionof 1 %.

For larger aircraft, with higher rolling moment of inertia and
higher cruise altitude, the roll-dampingratio is typically lower, and
both the traditional Dutch-roll approximation and the improved ap-
proximation become worse. As the roll-damping ratio is reduced,
the Dutch-roll eigenvaluesbegin to deviate more rapidly from those
predicted by the traditional approximation. For example, if we dou-
ble the rolling moment of inertia of the aircraft in the earlier ex-
ample, the roll-damping ratio is cut in half. In this case, the exact
dimensionless Dutch-roll eigenvalues are

Ape = —0.00839 * 0.11090i

The approximate solution obtained from Eq. (28) gives

Ape = —0.00824 * 0.11140i

whereas the approximate solution obtained from Eq. (6) results in

Ape = —0.01106 * 0.10053i

With this increase in rolling moment of inertia, the damping error
for the traditional Dutch-roll approximation is increased to more
than 30%, and the damping error for the improved Dutch-roll ap-
proximation is increased to almost 2%.

Because the traditional Dutch-roll approximationrequires an in-
finite roll-damping ratio and the improved approximation is based
on a large but finite roll-damping ratio, we should expect the ac-
curacy of both approximations to deteriorate as the roll-damping
ratio is decreased. Because the roll-damping ratio is inversely pro-
portional to rolling moment of inertia and directly proportional to
air density, a very large airplane flying at very high altitude can
result in a low roll-damping ratio, which may invalidate both the
traditional Dutch-roll approximation and the current improved ap-
proximation.The actual Dutch-rolleigenvaluesdeviate substantially
from the traditional approximation whenever the roll-damping ra-
tio is less than about 1.0. The improved Dutch-roll approximation
that has been presented here is in good agreement with the exact
solution for roll-damping ratios as low as about 0.3. However, for
an aircraft having a roll-dampingratio less than about 0.3, the basis
for the present approximation is no longer valid and this approx-
imation should not be used. Nevertheless, a very wide variety of
small to large airplanes have roll-damping ratios in the range from
0.3 to 1.0. For such aircraft the current Dutch-roll approximation
provides a significant improvement over the traditional approxima-
tion.

Discussion
The present closed-form approximation allows us to see more
easily how the aerodynamic coefficients and stability derivatives
affect the Dutch-roll motion. Damping has very little effect on the



490 PHILLIPS

Dutch-roll frequency. Thus, neglecting the damping in Eq. (32) and
applyingthe definition of Dutch-roll-stabilityratio from Eq. (29), the
undamped natural frequency for Dutch-roll motion is approximated
as

ope = (2Vo/ D)W @2 + Rps = (2Vy/b)

Xy/ @2 + {R g[Rey — (1 = Rys)Ry 51 — Ry pRiz Ry 5} Ri 5
(34)

where @, is the traditional dimensionless undamped natural fre-
quency for infinite roll damping. The roll-damping derivative is
always negative and, for a stable aircraft, the roll-stability deriva-
tive is also negative. The gravitational accelerationratio is positive,
the dimensionless change in side force with yawing rate is always
less than unity, and, for a conventional airplane generating positive
lift, the change in yawing moment with rollingrate is negative. Thus,
the Dutch-roll stability ratio is positive and, from Eq. (34), we see
that increasing roll stability will increase the Dutch-roll frequency
whereas increasing roll damping will decrease the Dutch-roll fre-
quency. Furthermore, because the change in side force with sideslip
angle is negative and the change in rolling moment with yawing
rate is typically positive, Eq. (34) shows that increasing the roll-
yaw coupling will normally increase the Dutch-roll frequency.

Using the definitionsfrom Egs. (29-31) in Eq. (33), the Dutch-roll
damping for the present approximation can be written as

~ Vo
Opr = 7(0_00 + RDC - RDp)
_& & + RL,)’RnAﬁ _ ng(leRnﬁ - RlﬁRnJ’)
b\ R, ; R, 5(R, 3+ RypR,7)

R s[R,, —(1 — Ry;)R, ;] — RysR R, ;
+ /ﬁ[ gy ( YA,)) mp] Y, BN 7 mp) (35)

2
R

where G, is the traditional yaw-damping term that provides the total
Dutch-rolldamping for the case of infinite roll damping. The second
term on the right-hand side of Eq. (35) is the Dutch-roll-coupling
ratio. Because the roll-yaw coupling derivatives typically have op-
posite signs and the roll-damping derivative is always negative,
the Dutch-roll-couplingratio will normally increase the Dutch-roll
damping. However, it is possible for the roll-yaw coupling deriva-
tives to have the same sign, in which case this Dutch-roll coupling
would tend to decrease the total Dutch-roll damping.

The third and fourth terms on the right-handside of Eq. (35) com-
pose the Dutch-roll phase-divergenceratio. This has been called the
phase-divergence ratio because it results from the phase shift be-
tween the various components that comprise the Dutch-roll motion
and because it will typically decrease the total Dutch-roll damping.
For an aircraftthatis stable in yaw, the denominatorin the third term
on the right-hand side of Eq. (35) is negative, and the denominator
in the last term is always positive. Thus, because the roll-stability

derivative is negative for a stable aircraft, Eq. (35) shows that in-
creasing roll stability will decrease the Dutch-roll damping. In a
similar manner, it can be shown that increasing yaw stability will
increase the Dutch-roll damping. Because the phase divergence ra-
tio is typically positive and decreases in magnitude with increasing
roll damping, Eq. (35) also shows that increasing roll damping will
normally increase the total Dutch-roll damping.

Conclusions

An improved closed-form approximation for Dutch roll has been
developed. The results show that the traditional Dutch-roll approx-
imation is an asymptotic solution that is valid only in the limit
of infinite roll damping. As the roll damping approaches infinity,
the eigenvalues and eigenvectors predicted by the present approxi-
mation approach those predicted by the traditional approximation.
However, the level of roll damping that is required to converge the
two approximationsfar exceeds the levels normally associated with
typical aircraft. The new closed-form approximationpoints out two
additional contributions to the Dutch-roll damping that the author
has called Dutch-roll coupling and Dutch-roll phase damping. The
Dutch-roll phase damping is a function of aircraft mass and moment
of inertia, as well as the roll-damping and roll-stability derivatives.
For a statically stable aircraft, the Dutch-roll phase damping is typ-
ically negative, tending to decrease the total Dutch-roll damping,
and it is possible for this negative phase damping to render the
Dutch-roll motion divergent. It has been shown that the traditional
Dutch-roll approximationrequires infinite roll damping and should
not be used when the roll-damping ratio is less than about 1.0. The
improved approximation is based on large but finite roll damping
and should not be used when the roll-damping ratio is less than
about 0.3.
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