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Improved Closed-Form Approximation for Dutch Roll

W. F. Phillips¤

Utah State University, Logan, Utah 84322-4130

An improved Dutch-roll approximation that includes the effects of roll as well as those of sideslip and yaw is
presented. This new approximation is based on a Taylor series expansion in one over the roll-damping deriva-
tive. The eigenvalues obtained from this solution are identical to those obtained from the traditional Dutch-roll
approximation when the roll-damping derivative approaches in� nity. From the new closed-form approximation,
the Dutch-roll frequency is shown to be a function of a dimensionless parameter, which the author has called
the Dutch-roll stability ratio. In addition, this new solution shows that there are three distinct components to the
Dutch-roll damping. The � rst is the conventionalyaw damping term, but the present solution points out two other
contributions to the Dutch-roll damping. These are called the Dutch-roll coupling and phase damping. In most
cases, the yaw damping is the largest of these three components. However, both the coupling and the phase damp-
ing can degrade the total Dutch-roll damping and, under certain conditions, could cause the Dutch-roll motion to
become divergent.

Nomenclature
Aw = planform area of the wing
b = wingspan
Cl = rolling moment coef� cient
Cl, p̄ = change in rolling moment coef� cient with dimensionless

rolling rate
Cl, r̄ = change in rolling moment coef� cient with dimensionless

yawing rate
Cl, b = change in rolling moment coef� cient with sideslip

angle
Cn = yawing moment coef� cient
Cn , p̄ = change in yawing moment coef� cient with dimensionless

rolling rate
Cn ,r̄ = change in yawing moment coef� cient with dimensionless

yawing rate
Cn , b = change in yawing moment coef� cient with sideslip

angle
CY = side-force coef� cient
CY, p̄ = change in side-force coef� cient with dimensionless

rolling rate
CY,r̄ = change in side-force coef� cient with dimensionless

yawing rate
CY, b = change in side-force coef� cient with sideslip angle
g = acceleration of gravity
Ix x = rolling moment of inertia, body-� xed coordinates
Izz = yawing moment of inertia, body-� xed coordinates
m = aircraft mass
p = rolling rate
p̄ = dimensionless rolling rate
RDc = Dutch-roll-couplingratio
RDp = Dutch-roll phase-divergenceratio
RDs = Dutch-roll-stabilityratio
Rdc = complex coef� cient
R f c = complex coef� cient
Rgy = dimensionless gravitational ratio
Rl , p̄ = dimensionless roll-damping ratio
Rl ,r̄ = dimensionless roll-coupling ratio
Rl , b = dimensionless roll-stability ratio
Rn , p̄ = dimensionless yaw-coupling ratio
Rn , r̄ = dimensionless yaw-damping ratio
Rn , b = dimensionless yaw-stability ratio
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RY, p̄ = dimensionless rolling side-force ratio
RY, r̄ = dimensionless yawing side-force ratio
RY, b = dimensionless slip-damping ratio
r = yawing rate
r̄ = dimensionless yawing rate
t = time
V = airspeed
V0 = equilibrium airspeed
v = sideslip velocity component, body-� xed

coordinates
W = aircraft weight
y f = spanwise position, Earth-� xed coordinates
b = sideslip angle
D = deviation from equilibrium
k = eigenvalue
k 1 = eigenvalue for in� nite roll-damping ratio
n = dimensionless spanwise position, Earth-� xed

coordinates
q = air density
r Dr = Dutch-roll-dampingrate
¯r 1 = dimensionless Dutch-roll-dampingfor in� nite roll

damping
s = dimensionless time
u = Euler bank angle or roll attitude
w = Euler azimuth angle or heading
x Dr = Dutch-roll-dampednatural frequency
¯x 1 = dimensionless undamped Dutch-roll frequency for

in� nite roll damping

Introduction

D UTCH roll is a lightly damped oscillatorymotion that can oc-
cur when an aircraft is disturbed laterally from equilibrium

� ight. The motion is an oscillatory interchange between sideslip,
roll, and yaw that occurs as a statically stable aircraft attempts to
reestablish lateral and directional equilibrium.Dutch roll is usually
the most troublesome of the natural modes associated with the dy-
namics of an aircraft in free � ight. This periodic motion has been
studied for nearly 100 years and is well understood.

One approach to the study of aircraft dynamics involves solving
the full nonlinear equations of motion.1 This system of nonlinear
equations is quite complex. Nonlinear dynamics with three degrees
of freedom is typically treated using the method of bifurcation to-
gether with numerical methods. Campos2 gives a good review of
the work on nonlinear aircraft dynamics.

A more common approach to aircraft dynamics starts with the
linearized equations of motion that were � rst developedby Bryan.3

These linearizedequationsresult in an eigenproblemoforder twelve
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that can be solved for the dynamic modes associatedwith an aircraft
in free � ight. Perkins4 has presented a detailed review of the early
work on linearized aircraft dynamics.

Linearized Dutch roll is characterized by the frequency, the
damping rate, and the relative amplitudes and phase shifts for
the oscillations in sideslip, rolling rate, yawing rate, course de-
viation, bank angle, and heading. Once the aerodynamic stability
and damping derivatives have been determined from wind-tunnel
tests or other means, the free-� ight Dutch-roll characteristics for
an aircraft can readily be evaluated. This can be done by nu-
merically determining the eigenvalues and eigenvectors associated
with the linearized equations of motion (see, for example, Etkin
and Reid,5 McCormick,6 McRuer et al.,7 Nelson,8 or Perkins and
Hage9 ). However, the eigenvalues and eigenvectors for Dutch roll
depend on many aircraft design and operating parameters, and the
nature of this dependence is not easily observable from a numer-
ical solution. For this reason, a closed-form approximation that
accurately describes the essential features of Dutch roll is desir-
able. In addition, closed-form solutions have always been useful
for the optimization of aircraft control systems (see Ashkenas and
McRuer10 ).

The usual closed-form approximation for Dutch roll is obtained
by assuming the motion consists solely of sideslip and yaw. The
rolling rate, the bank angle, and the rolling momentum equation
are all completely neglected in the traditional Dutch-roll approxi-
mation. Results obtained from this commonly used approximation
are not in particularly good agreement with the exact solution for
Dutch roll. The reason for poor agreement between this traditional
approximationand the exact solution is that Dutch roll involves sig-
ni� cantoscillationsin bankangle.Althoughseveralvariationsof the
traditional Dutch-roll approximation have been proposed, none of
these accuratelypredict many of the fundamental characteristicsof
Dutch roll. Both McRuer et al.7 and, more recently,Etkin and Reid5

present good reviews of existing Dutch-roll approximations. In the
present paper, an improved Dutch-roll approximation that includes
the effects of roll as well as those of sideslip and yaw is presented.
This new Dutch-roll approximation is based on the method used by
Phillips11 for the analysis of phugoid motion.

Traditional Dutch-Roll Approximation
To obtain the Dutch-roll eigenvalues and eigenvectors, whether

numerically or analytically, we start with the linearized lateral
equations of aircraft motion. The development of these equations
can be found in any undergraduate textbook dealing with aircraft
dynamics.5 ¡ 9 The eigenvalues and eigenvectors are obtained from
thehomogeneousequationswith all controlinputsset tozero.For the
Dutch-roll approximation,we neglect the product of inertia and the
change in side forcewith respect to rolling rate because these values
are typically small and have little effect on Dutch roll. If we also
restrict the analysis to deviations about level � ight, the familiar lin-
earized lateral equations of motion can be written in dimensionless
form as

8
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(1)

where a subscript following a comma indicates differentiation.As
is the usual convention, the characteristic length is taken to be the
semispan and the characteristic velocity is taken to be the equilib-
rium airspeed. Thus,

D b »= D v / V0 , D p̄ ´ b D p /2V0

D r̄ ´ b D r / 2V0, D n ´ 2D y f / b (2)

Here, the D indicatesa deviationfrom equilibrium,and the notation
used on the left-hand side of Eq. (1) indicates differentiation with
respect to dimensionless time,

f̂ ´
b

2V0

@f

@t
´

@f

@s
, s ´

2V0t

b
(3)

The dimensionlesscoef� cients on the right-hand side of Eq. (1) are
all evaluated at the equilibrium � ight condition and are de� ned as

RY, b ´ ( q Aw b/ 4m)CY, b , RY,r̄ ´ ( q Aw b /4m)CY,r̄

Rgy ´ gb ê 2V 2
0 , Rl , b ´

¡
q Aw b3 ê 8Ix x

¢
Cl , b

Rl , p̄ ´
¡
q Aw b3 ê 8Ix x

¢
Cl , p̄ , Rl, r̄ ´

¡
q Aw b3 ê 8Ix x

¢
Cl , r̄

Rn , b ´
¡
q Aw b3 ê 8Izz

¢
Cn , b , Rn, p̄ ´

¡
q Aw b3 ê 8Izz

¢
Cn, p̄

Rn , r̄ ´
¡
q Aw b3 ê 8Izz

¢
Cn, r̄ (4)

Dutch roll is a dampedoscillatorymotion characterizedby a com-
bination of sideslip, roll, and yaw. Nevertheless, the best known
and most widely used Dutch-roll approximation is a � at yawing/
sideslipping motion in which roll is completely suppressed. In this
approximation, the rolling rate, the bank angle, and the rolling mo-
mentumequationare completelyneglected.Using these approxima-
tions for motion relative to level � ight, the eigenproblemassociated
with Eq. (1) becomes

2
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(RY, b ¡ k ) 0 (RY, r̄ ¡ 1) 0 0 0

0 1 0 0 0 0

Rn , b 0 (Rn, r̄ ¡ k ) 0 0 0

1 0 0 ¡ k 0 1

0 0 0 0 1 0

0 0 1 0 0 ¡ k
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(5)

The nontrivial eigenvalues obtained from Eq. (5) are readily found
to be

k = (RY, b + Rn , r̄ ) /2

§ i
p

(1 ¡ RY,r̄ )Rn, b + RY, b Rn , r̄ ¡ [(RY, b + Rn, r̄ ) / 2]2 (6)

and the associated eigenvectorsare given by

8
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;
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>>>><

>>>>:

0

Rn, b / ( k ¡ Rn , r̄ )

1/ k + [Rn, b / ( k ¡ Rn , r̄ )]/ k 2

0

[Rn, b / ( k ¡ Rn , r̄ )]/ k

;
>>>>=

>>>>;

D b (7)

From Eq. (6), the Dutch-roll frequency is

x Dr = (2V0 /b) Im( k )

= (2V0 / b)
p

(1 ¡ RY, r̄ )Rn , b + RY, b Rn, r̄ ¡ [(RY, b + Rn ,r̄ ) /2]2

(8)

and the Dutch-roll damping rate is

r Dr = ¡ (2V0 /b) Re( k ) = ¡ (V0 / b)(RY, b + Rn, r̄ ) (9)

Best results from this traditional approximation are obtained for
light aircraft. For example, consider the typical general aviation
airplane having
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Fig. 1 Typical Dutch-roll � ight deviations for a light airplane.

Aw = 185 ft2, b = 33 ft, V0 = 180 ft/s

W = 2800 lbf, Ixx = 1000 slug-ft2 , Izz = 3500 slug-ft2

CY, b = ¡ 0.560, CY, p̄ = 0.0, CY, r̄ = 0.240

Cl , b = ¡ 0.075, Cl, p̄ = ¡ 0.410, Cl ,r̄ = 0.105

Cn , b = 0.070, Cn , p̄ = ¡ 0.0575, Cn , r̄ = ¡ 0.125

For this light airplane, the exact solution for the Dutch-roll eigen-
values and eigenvectors obtained numerically from Eq. (1) gives
8
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D b
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D r̄

D n

D u

D w

;
>>>>>>=

>>>>>>;

= C1,2

8
>>>>>><

>>>>>>:

0.58853

¡ 0.11045 ¨ 0.00147i

0.01444 ¨ 0.12146i

0.16888 ¨ 0.22197i

0.09389 § 0.48749i

¡ 0.54776 § 0.04678i

;
>>>>>>=

>>>>>>;

£ exp[( ¡ 0.04498 § 0.21791i ) s ]

whereas the traditional approximation obtained from Eqs. (6) and
(7) yields
8
>>>>>><

>>>>>>:

D b

D p̄

D r̄

D n

D u

D w

;
>>>>>>=

>>>>>>;

= C1,2

8
>>>>>><

>>>>>>:

0.65348

0.00000

0.01558 ¨ 0.12960i

0.34429 ¨ 0.13878i

0.00000

¡ 0.64238 § 0.07410i

;
>>>>>>=

>>>>>>;

£ exp[( ¡ 0.04690 § 0.19634i ) s ]

Even for this light aircraft, although the eigenvalues predicted by
the traditional approximationare accurate to within about 10%, the
eigenvectorsdo not con� rm the underlying hypothesis that oscilla-
tions in roll are negligible. For light aircraft, the largest Dutch-roll
oscillations are typically in sideslip. However, the Dutch-roll am-
plitude for the rolling rate is nearlyas large as that for sideslip and is
about the same as that for the yawing rate. Furthermore, Dutch-roll
oscillations in bank angle are typically as large as those in head-
ing. Figure 1 shows the relative amplitudes and phase shifts for
the Dutch-roll � ight deviations of a typical light airplane. Because
Dutch roll in larger aircraft typically produces even larger rolling
oscillations, it is dif� cult to justify neglecting roll when attempting
to develop a Dutch-roll approximation.

Improved Dutch-Roll Approximation
We shall now develop an improved Dutch-roll approximation

that includes the effects of roll as well as those of sideslip and yaw.

Accounting for all three lateral degrees of freedom, the eigenprob-
lem associated with Eq. (1) is
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Using the second and � fth equations in Eq. (10), we can eliminate
the rolling rate and bank angle from the � rst and third equations.
Thus, Eq. (10) can be rearranged and separated to yield
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and
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where

Rxc ´
Rn , b Rl, r̄ ¡ Rl, b (Rn, r̄ ¡ k )

(Rl , p̄ ¡ k )(Rn, r̄ ¡ k ) ¡ Rl, r̄ Rn, p̄

Rzc ´
Rl , b Rn , p̄ ¡ Rn, b (Rl , p̄ ¡ k )

(Rl , p̄ ¡ k )(Rn , r̄ ¡ k ) ¡ Rl , r̄ Rn , p̄

(13)
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The characteristic equation for Eq. (11) is
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(14)
which can be expanded to give

k 2 ¡

³
RY, b + Rn, r̄ ¡

Rl ,r̄ Rn, p̄

Rl , p̄ ¡ k

´
k + (1 ¡ RY, r̄ )Rn, b + RY, b Rn ,r̄

+
Rl , b [Rgy ¡ (1 ¡ RY, r̄ )Rn , p̄] ¡ RY, b Rl , r̄ Rn , p̄

Rl , p̄ ¡ k

+
Rgy (Rl , r̄ Rn , b ¡ Rl , b Rn ,r̄ )

(Rl , p̄ ¡ k ) k
= 0 (15)

Because roll is typicallyheavilydamped, those terms in Eq. (15) that
are inversely proportional to the roll-damping ratio are small, but
not necessarily totally negligible.This suggests expandingEq. (15)
in terms of a Taylor series in one over the roll-damping ratio. For
this purpose we use the expansion,

1
Rl , p̄ ¡ k

=
1

Rl, p̄

+
k

R2
l , p̄

+
k 2

R3
l, p̄

+
k 3

R4
l , p̄

+ ¢ ¢ ¢ (16)

If we let k 1 represent the eigenvalues corresponding to an in� nite
roll-damping ratio Rl , p̄ ! 1 , then Eq. (15) gives

k 2
1 ¡ (RY, b + Rn, r̄ ) k 1 + (1 ¡ RY, r̄ )Rn , b + RY, b Rn, r̄ = 0 (17)

and the eigenvalues are the roots of this quadratic equation,

k 1 = (RY, b + Rn, r̄ ) / 2

§ i
p

(1 ¡ RY,r̄ )Rn, b + RY, b Rn , r̄ ¡ [(RY, b + Rn, r̄ ) / 2]2 (18)

Note that the eigenvalues obtained from Eq. (18) are identical to
thoseobtained from Eq. (6). Thus, we see that the traditionalDutch-
roll approximationis validonly in the limit as the roll-dampingratio
approachesin� nity. If the roll-dampingratio were large enough, the
rolling motion associatedwith Dutch roll would be completely sup-
pressed and the motion would indeed consist solely of sideslip and
yaw. However, an aircraft seldom possesses suf� cient roll damping
to eliminate the rolling oscillations from Dutch roll. The effects of
roll can be included in the Dutch-roll approximation by carrying
some of the low order terms from the Taylor series expansiongiven
by Eq. (16).

Because the roll-damping ratio is typically larger than the Dutch
roll eigenvalue, the terms in Eq. (16) become smaller with increas-
ing order. This Taylor series can be evaluated approximately by
replacing the actual eigenvalueson the right-hand side with the ap-
proximate eigenvalues from Eq. (18),

1
Rl , p̄ ¡ k

»=
1

Rl, p̄

+
k 1

R2
l , p̄

+
k 2

1

R3
l, p̄

+
k 3

1

R4
l , p̄

+ ¢ ¢ ¢ (19)

Furthermore, because the Dutch-roll damping is typically an order
of magnitude less than the Dutch-roll frequency,we can also neglect
the damping in Eq. (19) and use the approximations,

1
Rl , p̄ ¡ k

»=
1

Rl , p̄

§ i
¯x 1

R2
l , p̄

¡
¯x 2

1

R3
l, p̄

¨ i
¯x 3

1

R4
l , p̄

+ ¢ ¢ ¢ (20)

and

1
(Rl , p̄ ¡ k ) k

»= ¨ i
1

¯x 1 Rl , p̄

+
1

R2
l, p̄

§ i
¯x 1

R3
l , p̄

¡
¯x 2

1

R4
l , p̄

+ ¢ ¢ ¢ (21)

where

¯x 1 ´
p

(1 ¡ RY, r̄ )Rn , b + RY, b Rn, r̄ (22)

Retaining the � rst two terms in each of these Taylor series and ap-
plying the results to thecharacteristicequationgivenby Eq. (15), we
obtain a quadratic equation for the approximate Dutch-roll eigen-
values,

k 2 ¡ (RY, b + Rn, r̄ + Rdc) k + (1 ¡ RY, r̄ )Rn, b

+ RY, b Rn , r̄ + R f c = 0 (23)

where the complex coef� cients Rdc and R f c are de� ned as

Rdc ´ ¡
Rl , r̄ Rn , p̄

Rl , p̄
¨ i

¯x 1 Rl , r̄ Rn , p̄

R2
l , p̄

(24)

and

R f c ´

2

664

Rl , b [Rgy ¡ (1 ¡ RY,r̄ )Rn, p̄] ¡ RY, b Rl, r̄ Rn , p̄

Rl , p̄

+
Rgy(Rl ,r̄ Rn, b ¡ Rl , b Rn ,r̄ )

R2
l , p̄

3

775

§ i

2

664

Rgy(Rl , b Rn ,r̄ ¡ Rl ,r̄ Rn, b )

¯x 1 Rl , p̄

+
¯x 1 {Rl , b [Rgy ¡ (1 ¡ RY,r̄ )Rn, p̄ ] ¡ RY, b Rl , r̄ Rn , p̄}

R2
l , p̄

3

775

(25)

The eigenvalues obtained from Eq. (23), with the use of Eq. (22),
can be written as

k = (RY, b + Rn , r̄ + Rdc) /2

§ i
p

(1 ¡ RY,r̄ )Rn, b + RY, b Rn , r̄ + R f c ¡ [(RY, b + Rn, r̄ + Rdc)/2]2

= (RY, b + Rn ,r̄ + Rdc) /2

§ i ¯x 1

q
1 + Rf c ê ¯x 2

1 ¡ [(RY, b + Rn ,r̄ + Rdc) / 2 ¯x 1 ]2 (26)

Because both the complex constant R f c and the damping term are
small compared to ¯x 1 , Eq. (26) can be further approximated as

k »=
RY, b + Rn , r̄ + Rdc

2

§ i ¯x 1

³
1 +

Re(R f c)

2 ¯x 2
1

§ i
Im(R f c)

2 ¯x 2
1

¡
(RY, b + Rn, r̄ + Rdc)2

8 ¯x 2
1

´

»=
RY, b + Rn , r̄ + Rdc ¡ Im(R f c) / ¯x 1

2

§ i$1

s

1 +
Re(R f c)

¯x 2
1

¡

³
RY, b + Rn, r̄ + Rdc

2 ¯x 1

2́

=
RY, b + Rn , r̄ + Rdc ¡ Im(R f c) / ¯x 1

2

§ i

s

¯x 2
1 + Re(R f c) ¡

³
RY, b + Rn, r̄ + Rdc

2

2́

(27)

Because the imaginary componentof the Dutch-rolleigenvalueis
typically an order of magnitude larger than the real component, the
second-order terms in Rdc and R f c do not have a signi� cant effect
on the Dutch-roll frequency. However, the second-order terms are
crucial to an accuratedeterminationof the much smallerDutch-roll-
damping rate. For this reason, we shall retain all second-orderterms
in the real component of the eigenvalue but neglect second-order
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terms in the imaginary component. Thus, because the imaginary
component of Rdc is second order, it can be neglected in the Dutch-
roll approximation. We can also neglect the second-order term in
the real part of R f c because it affects only the frequency. On the
other hand, we must retain the second term in the imaginary part
of R f c because this term is part of the damping. Thus, for this
approximation, the Dutch-roll eigenvalues are

k »= (RY, b + Rn , r̄ ¡ RDc + RDp) / 2

§ i
p

(1 ¡ RY,r̄ )Rn, b + RY, b Rn , r̄ + RDs ¡ [(RY, b + Rn, r̄ ) / 2]2

(28)

where we de� ne the Dutch-roll-stabilityratio,

RDs ´ {Rl , b [Rgy ¡ (1 ¡ RY,r̄ )Rn, p̄ ] ¡ RY, b Rl, r̄ Rn , p̄}/ Rl , p̄ (29)

the Dutch-roll-couplingratio,

RDc ´ Rl , r̄ Rn , p̄ / Rl , p̄ (30)

and the Dutch-roll phase-divergenceratio,

RDp ´
Rgy(Rl, r̄ Rn , b ¡ Rl, b Rn, r̄ )

Rl, p̄ (Rn, b + RY, b Rn , r̄ )
¡

RDs

Rl , p̄

(31)

This gives the approximate Dutch-roll frequency,

x Dr
»= (2V0 /b)

£
p

(1 ¡ RY, r̄ )Rn , b + RY, b Rn , r̄ + RDs ¡ [(RY, b + Rn ,r̄ )/2]2

(32)

and the approximate Dutch-roll-dampingrate,

r Dr
»= ¡ (V0 / b)(RY, b + Rn ,r̄ ¡ RDc + RDp) (33)

Results
In contrast to the result predicted from Eq. (8), the Dutch-roll

frequency obtained from Eq. (32) depends on the roll stability of
the aircraft and the accelerationof gravity.The Dutch-roll damping
from Eq. (33) contains two additional contributions that are not
included in the approximationgiven by Eq. (9). Here the Dutch-roll
damping is found to be a functionof the roll-dampingderivative,the
roll–yaw couplingderivatives,and the lateral stabilityderivativesas
well as the yaw and slip-damping derivatives. The eigenvalues and
eigenvectorspredicted from Eqs. (28) and (12) are greatly improved
over those predicted from Eqs. (6) and (7). For example, consider
the typical midsize jet transport8 at 35,000 ft having

Aw = 2000 ft2, b = 120 ft, V0 = 778.5 ft/s

M = 0.8, W = 126,000 lbf

Ix x = 1.15 £ 105 slug ¢ ft2 , Izz = 4.07 £ 106 slug ¢ ft2

CY, b = ¡ 0.812, CY, p̄ = 0.0, CY, r̄ = 0.0

Cl , b = ¡ 0.177, Cl , p̄ = ¡ 0.312, Cl , r̄ = 0.153

Cn, b = 0.129, Cn, p̄ = ¡ 0.011, Cn , r̄ = ¡ 0.165

For this airplane and � ight condition, the exact solution for the di-
mensionless Dutch-roll eigenvalues and eigenvectors obtained nu-
merically from Eq. (1) gives
8
>>>>>><

>>>>>>:

D b

D p̄

D r̄

D n

D u

D w

;
>>>>>>=

>>>>>>;

= C1,2

8
>>>>>><

>>>>>>:

0.024277 ¨ 0.180838i

¡ 0.008964 § 0.103525i

¡ 0.017147 ¨ 0.002782i

¡ 0.239543 ¨ 0.093425i

0.930224

¡ 0.011572 § 0.155079i

;
>>>>>>=

>>>>>>;

£ exp[( ¡ 0.00964 § 0.11129i ) s ]

The approximate solution obtained by using Eq. (28) with Eq. (12)
results in
8
>>>>>><

>>>>>>:

D b

D p̄

D r̄

D n

D u

D w

;
>>>>>>=

>>>>>>;

= C1,2

8
>>>>>><

>>>>>>:

0.02420 ¨ 0.18095i

¡ 0.00890 § 0.10357i

¡ 0.01714 ¨ 0.00278i

¡ 0.24199 ¨ 0.09172i

0.92977

¡ 0.01167 § 0.15487i

;
>>>>>>=

>>>>>>;

£ exp[( ¡ 0.00957 § 0.11140i ) s ]

whereas the approximate solution obtained from Eqs. (6) and (7)
yields
8
>>>>>><

>>>>>>:

D b

D p̄

D r̄

D n

D u

D w

;
>>>>>>=

>>>>>>;

= C1,2

8
>>>>>><

>>>>>>:

0.59697

0.00000

0.00112 ¨ 0.06001i

0.52363 ¨ 0.11664i

0.00000

¡ 0.59104 § 0.05393i

;
>>>>>>=

>>>>>>;

£ exp[( ¡ 0.01106 § 0.10053i ) s ]

For this jet transport, the eigenvalues and eigenvectors predicted
by the improved Dutch-roll approximation agree very closely with
the exact solution. For the traditional approximation the damped
natural frequency is in error by 10%, the damping error is 15%,
and the eigenvectors are not even reasonable. Notice that, for this
midsizeaircraft, the largestDutch-rolloscillationsare in bankangle,
which is completely neglected in the traditional approximation.

Figures 2–7 show how the Dutch-roll approximation given by
Eq. (28) compares with that given by Eq. (6) and the exact so-
lution for a broad range of aerodynamic parameters. Note that,
as the roll-damping derivative approaches in� nity, the Dutch-roll-
stability ratio, the Dutch-roll-coupling ratio, and the Dutch-roll

Fig. 2 Effect of roll damping on the dimensionless Dutch-roll eigen-
values.

Fig. 3 Effect of yaw damping on the dimensionless Dutch-roll eigen-
values.
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Fig. 4 Effect of roll stability on the dimensionless Dutch-roll eigen-
values.

Fig. 5 Effect of yaw stability on the dimensionless Dutch-roll eigen-
values.

Fig. 6 Effect of roll coupling on the dimensionless Dutch-roll eigen-
values.

Fig. 7 Effect of yaw coupling on the dimensionless Dutch-roll eigen-
values.

phase-divergence ratio all approach zero. Hence, we see that, in
the limit of in� nite roll damping, the result given by Eq. (28) re-
duces exactly to that given by Eq. (6). Thus, as mentioned earlier,
Eq. (6) represents an asymptotic solution for in� nite roll damping.
This can be seen graphically in Fig. 2, where all parameters ex-
cept the roll-damping derivative have been held constant at those
values given in the aforementioned example. In Fig. 3, a compari-
son between Eq. (6), Eq. (28), and the exact solution is shown for
a broad range of yaw damping. In Fig. 4, the same comparison is
shown for a broad range of roll-stabilityderivatives.Figure 5 shows
the same comparison for a broad range of yaw-stability derivative.
Similar comparisons, showing the effects of roll and yaw coupling
are displayed in Figs. 6 and 7, respectively.

The aircraft chosen for the example given was a midsize jet trans-
port. The author has made similar comparisons for other types of
aircraft. Light aircraft have a low rolling moment of inertia, rela-
tively high roll damping, and are typically � own at lower altitudes.
Thus, light aircraft are characterized by a fairly high roll-damping
ratio and are particularly � attering to the traditional Dutch-roll ap-
proximation. For such aircraft, the traditional approximation gives
eigenvaluesthat are typically accurate to within about 10%, and the
improvedapproximationis accurate to withina small fractionof 1%.

For larger aircraft, with higher rolling moment of inertia and
higher cruise altitude, the roll-damping ratio is typically lower, and
both the traditionalDutch-roll approximationand the improved ap-
proximation become worse. As the roll-damping ratio is reduced,
the Dutch-roll eigenvaluesbegin to deviate more rapidly from those
predictedby the traditional approximation.For example, if we dou-
ble the rolling moment of inertia of the aircraft in the earlier ex-
ample, the roll-damping ratio is cut in half. In this case, the exact
dimensionless Dutch-roll eigenvaluesare

k Dr = ¡ 0.00839 § 0.11090i

The approximate solution obtained from Eq. (28) gives

k Dr = ¡ 0.00824 § 0.11140i

whereas the approximate solution obtained from Eq. (6) results in

k Dr = ¡ 0.01106 § 0.10053i

With this increase in rolling moment of inertia, the damping error
for the traditional Dutch-roll approximation is increased to more
than 30%, and the damping error for the improved Dutch-roll ap-
proximation is increased to almost 2%.

Because the traditional Dutch-roll approximation requires an in-
� nite roll-damping ratio and the improved approximation is based
on a large but � nite roll-damping ratio, we should expect the ac-
curacy of both approximations to deteriorate as the roll-damping
ratio is decreased. Because the roll-damping ratio is inversely pro-
portional to rolling moment of inertia and directly proportional to
air density, a very large airplane � ying at very high altitude can
result in a low roll-damping ratio, which may invalidate both the
traditional Dutch-roll approximation and the current improved ap-
proximation.The actualDutch-rolleigenvaluesdeviatesubstantially
from the traditional approximation whenever the roll-damping ra-
tio is less than about 1.0. The improved Dutch-roll approximation
that has been presented here is in good agreement with the exact
solution for roll-damping ratios as low as about 0.3. However, for
an aircraft having a roll-damping ratio less than about 0.3, the basis
for the present approximation is no longer valid and this approx-
imation should not be used. Nevertheless, a very wide variety of
small to large airplanes have roll-damping ratios in the range from
0.3 to 1.0. For such aircraft the current Dutch-roll approximation
provides a signi� cant improvement over the traditional approxima-
tion.

Discussion
The present closed-form approximation allows us to see more

easily how the aerodynamic coef� cients and stability derivatives
affect the Dutch-roll motion. Damping has very little effect on the
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Dutch-roll frequency.Thus, neglectingthe damping in Eq. (32) and
applyingthede� nitionofDutch-roll-stabilityratio fromEq. (29), the
undampednatural frequencyfor Dutch-rollmotion is approximated
as

x Dr
»= (2V0 / b)

p
¯x 2

1 + RDs = (2V0 /b)

£
p

¯x 2
1 + {Rl , b [Rgy ¡ (1 ¡ RY, r̄ )Rn , p̄] ¡ RY, b Rl , r̄ Rn , p̄}/ Rl , p̄

(34)

where ¯x 1 is the traditional dimensionless undamped natural fre-
quency for in� nite roll damping. The roll-damping derivative is
always negative and, for a stable aircraft, the roll-stability deriva-
tive is also negative. The gravitationalaccelerationratio is positive,
the dimensionless change in side force with yawing rate is always
less than unity, and, for a conventionalairplane generating positive
lift, the change in yawingmoment with rollingrate is negative.Thus,
the Dutch-roll stability ratio is positive and, from Eq. (34), we see
that increasing roll stability will increase the Dutch-roll frequency
whereas increasing roll damping will decrease the Dutch-roll fre-
quency.Furthermore, because the change in side force with sideslip
angle is negative and the change in rolling moment with yawing
rate is typically positive, Eq. (34) shows that increasing the roll–
yaw coupling will normally increase the Dutch-roll frequency.

Using thede� nitionsfromEqs. (29–31) in Eq. (33), theDutch-roll
damping for the present approximation can be written as

r Dr
»=

V0

b
( ¯r 1 + RDc ¡ RDp)

=
V0

b

³
¯r 1 +

Rl, r̄ Rn, p̄

Rl, p̄
¡

Rgy(Rl ,r̄ Rn , b ¡ Rl , b Rn ,r̄ )
Rl , p̄(Rn , b + RY, b Rn, r̄ )

+
Rl , b [Rgy ¡ (1 ¡ RY, r̄ )Rn , p̄] ¡ RY, b Rl , r̄ Rn , p̄

R2
l , p̄

´
(35)

where ¯r 1 is the traditionalyaw-dampingterm that providesthe total
Dutch-rolldampingfor the case of in� nite roll damping.The second
term on the right-hand side of Eq. (35) is the Dutch-roll-coupling
ratio. Because the roll–yaw coupling derivatives typically have op-
posite signs and the roll-damping derivative is always negative,
the Dutch-roll-couplingratio will normally increase the Dutch-roll
damping. However, it is possible for the roll–yaw coupling deriva-
tives to have the same sign, in which case this Dutch-roll coupling
would tend to decrease the total Dutch-roll damping.

The third and fourth terms on the right-handside of Eq. (35) com-
pose the Dutch-roll phase-divergenceratio. This has been called the
phase-divergence ratio because it results from the phase shift be-
tween the various components that comprise the Dutch-roll motion
and because it will typically decrease the total Dutch-roll damping.
For an aircraft that is stable in yaw, the denominator in the third term
on the right-hand side of Eq. (35) is negative, and the denominator
in the last term is always positive. Thus, because the roll-stability

derivative is negative for a stable aircraft, Eq. (35) shows that in-
creasing roll stability will decrease the Dutch-roll damping. In a
similar manner, it can be shown that increasing yaw stability will
increase the Dutch-roll damping. Because the phase divergence ra-
tio is typically positive and decreases in magnitude with increasing
roll damping, Eq. (35) also shows that increasing roll damping will
normally increase the total Dutch-roll damping.

Conclusions
An improved closed-formapproximationfor Dutch roll has been

developed. The results show that the traditionalDutch-roll approx-
imation is an asymptotic solution that is valid only in the limit
of in� nite roll damping. As the roll damping approaches in� nity,
the eigenvalues and eigenvectors predicted by the present approxi-
mation approach those predicted by the traditional approximation.
However, the level of roll damping that is required to converge the
two approximationsfar exceeds the levels normally associatedwith
typical aircraft.The new closed-formapproximationpoints out two
additional contributions to the Dutch-roll damping that the author
has called Dutch-roll coupling and Dutch-roll phase damping. The
Dutch-roll phase damping is a functionof aircraft mass and moment
of inertia, as well as the roll-damping and roll-stability derivatives.
For a statically stable aircraft, the Dutch-roll phase damping is typ-
ically negative, tending to decrease the total Dutch-roll damping,
and it is possible for this negative phase damping to render the
Dutch-roll motion divergent. It has been shown that the traditional
Dutch-roll approximationrequires in� nite roll damping and should
not be used when the roll-damping ratio is less than about 1.0. The
improved approximation is based on large but � nite roll damping
and should not be used when the roll-damping ratio is less than
about 0.3.
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